(0) Obligation:

The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

a(C(x1, x2), y, z) → C(a(x1, y, z), a(x2, y, y))
a(Z, y, z) → Z
eqZList(C(x1, x2), C(y1, y2)) → and(eqZList(x1, y1), eqZList(x2, y2))
eqZList(C(x1, x2), Z) → False
eqZList(Z, C(y1, y2)) → False
eqZList(Z, Z) → True
second(C(x1, x2)) → x2
first(C(x1, x2)) → x1

The (relative) TRS S consists of the following rules:

and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True

Rewrite Strategy: INNERMOST

(1) RelTrsToTrsProof (UPPER BOUND(ID) transformation)

transformed relative TRS to TRS

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

a(C(x1, x2), y, z) → C(a(x1, y, z), a(x2, y, y))
a(Z, y, z) → Z
eqZList(C(x1, x2), C(y1, y2)) → and(eqZList(x1, y1), eqZList(x2, y2))
eqZList(C(x1, x2), Z) → False
eqZList(Z, C(y1, y2)) → False
eqZList(Z, Z) → True
second(C(x1, x2)) → x2
first(C(x1, x2)) → x1
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True

Rewrite Strategy: INNERMOST

(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(C(z0, z1), z2, z3) → C(a(z0, z2, z3), a(z1, z2, z2))
a(Z, z0, z1) → Z
eqZList(C(z0, z1), C(z2, z3)) → and(eqZList(z0, z2), eqZList(z1, z3))
eqZList(C(z0, z1), Z) → False
eqZList(Z, C(z0, z1)) → False
eqZList(Z, Z) → True
second(C(z0, z1)) → z1
first(C(z0, z1)) → z0
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True
Tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
A(Z, z0, z1) → c1
EQZLIST(C(z0, z1), C(z2, z3)) → c2(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2), EQZLIST(z1, z3))
EQZLIST(C(z0, z1), Z) → c3
EQZLIST(Z, C(z0, z1)) → c4
EQZLIST(Z, Z) → c5
SECOND(C(z0, z1)) → c6
FIRST(C(z0, z1)) → c7
AND(False, False) → c8
AND(True, False) → c9
AND(False, True) → c10
AND(True, True) → c11
S tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
A(Z, z0, z1) → c1
EQZLIST(C(z0, z1), C(z2, z3)) → c2(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2), EQZLIST(z1, z3))
EQZLIST(C(z0, z1), Z) → c3
EQZLIST(Z, C(z0, z1)) → c4
EQZLIST(Z, Z) → c5
SECOND(C(z0, z1)) → c6
FIRST(C(z0, z1)) → c7
AND(False, False) → c8
AND(True, False) → c9
AND(False, True) → c10
AND(True, True) → c11
K tuples:none
Defined Rule Symbols:

a, eqZList, second, first, and

Defined Pair Symbols:

A, EQZLIST, SECOND, FIRST, AND

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 10 trailing nodes:

EQZLIST(Z, Z) → c5
SECOND(C(z0, z1)) → c6
AND(False, False) → c8
AND(True, True) → c11
AND(True, False) → c9
FIRST(C(z0, z1)) → c7
EQZLIST(C(z0, z1), Z) → c3
A(Z, z0, z1) → c1
EQZLIST(Z, C(z0, z1)) → c4
AND(False, True) → c10

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(C(z0, z1), z2, z3) → C(a(z0, z2, z3), a(z1, z2, z2))
a(Z, z0, z1) → Z
eqZList(C(z0, z1), C(z2, z3)) → and(eqZList(z0, z2), eqZList(z1, z3))
eqZList(C(z0, z1), Z) → False
eqZList(Z, C(z0, z1)) → False
eqZList(Z, Z) → True
second(C(z0, z1)) → z1
first(C(z0, z1)) → z0
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True
Tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
EQZLIST(C(z0, z1), C(z2, z3)) → c2(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2), EQZLIST(z1, z3))
S tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
EQZLIST(C(z0, z1), C(z2, z3)) → c2(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2), EQZLIST(z1, z3))
K tuples:none
Defined Rule Symbols:

a, eqZList, second, first, and

Defined Pair Symbols:

A, EQZLIST

Compound Symbols:

c, c2

(7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(C(z0, z1), z2, z3) → C(a(z0, z2, z3), a(z1, z2, z2))
a(Z, z0, z1) → Z
eqZList(C(z0, z1), C(z2, z3)) → and(eqZList(z0, z2), eqZList(z1, z3))
eqZList(C(z0, z1), Z) → False
eqZList(Z, C(z0, z1)) → False
eqZList(Z, Z) → True
second(C(z0, z1)) → z1
first(C(z0, z1)) → z0
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True
Tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
EQZLIST(C(z0, z1), C(z2, z3)) → c2(EQZLIST(z0, z2), EQZLIST(z1, z3))
S tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
EQZLIST(C(z0, z1), C(z2, z3)) → c2(EQZLIST(z0, z2), EQZLIST(z1, z3))
K tuples:none
Defined Rule Symbols:

a, eqZList, second, first, and

Defined Pair Symbols:

A, EQZLIST

Compound Symbols:

c, c2

(9) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

a(C(z0, z1), z2, z3) → C(a(z0, z2, z3), a(z1, z2, z2))
a(Z, z0, z1) → Z
eqZList(C(z0, z1), C(z2, z3)) → and(eqZList(z0, z2), eqZList(z1, z3))
eqZList(C(z0, z1), Z) → False
eqZList(Z, C(z0, z1)) → False
eqZList(Z, Z) → True
second(C(z0, z1)) → z1
first(C(z0, z1)) → z0
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:none
Tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
EQZLIST(C(z0, z1), C(z2, z3)) → c2(EQZLIST(z0, z2), EQZLIST(z1, z3))
S tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
EQZLIST(C(z0, z1), C(z2, z3)) → c2(EQZLIST(z0, z2), EQZLIST(z1, z3))
K tuples:none
Defined Rule Symbols:none

Defined Pair Symbols:

A, EQZLIST

Compound Symbols:

c, c2

(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

EQZLIST(C(z0, z1), C(z2, z3)) → c2(EQZLIST(z0, z2), EQZLIST(z1, z3))
We considered the (Usable) Rules:none
And the Tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
EQZLIST(C(z0, z1), C(z2, z3)) → c2(EQZLIST(z0, z2), EQZLIST(z1, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(A(x1, x2, x3)) = 0   
POL(C(x1, x2)) = [1] + x1 + x2   
POL(EQZLIST(x1, x2)) = x1   
POL(c(x1, x2)) = x1 + x2   
POL(c2(x1, x2)) = x1 + x2   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:none
Tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
EQZLIST(C(z0, z1), C(z2, z3)) → c2(EQZLIST(z0, z2), EQZLIST(z1, z3))
S tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
K tuples:

EQZLIST(C(z0, z1), C(z2, z3)) → c2(EQZLIST(z0, z2), EQZLIST(z1, z3))
Defined Rule Symbols:none

Defined Pair Symbols:

A, EQZLIST

Compound Symbols:

c, c2

(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
We considered the (Usable) Rules:none
And the Tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
EQZLIST(C(z0, z1), C(z2, z3)) → c2(EQZLIST(z0, z2), EQZLIST(z1, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(A(x1, x2, x3)) = x1   
POL(C(x1, x2)) = [1] + x1 + x2   
POL(EQZLIST(x1, x2)) = x2   
POL(c(x1, x2)) = x1 + x2   
POL(c2(x1, x2)) = x1 + x2   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:none
Tuples:

A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
EQZLIST(C(z0, z1), C(z2, z3)) → c2(EQZLIST(z0, z2), EQZLIST(z1, z3))
S tuples:none
K tuples:

EQZLIST(C(z0, z1), C(z2, z3)) → c2(EQZLIST(z0, z2), EQZLIST(z1, z3))
A(C(z0, z1), z2, z3) → c(A(z0, z2, z3), A(z1, z2, z2))
Defined Rule Symbols:none

Defined Pair Symbols:

A, EQZLIST

Compound Symbols:

c, c2

(15) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(16) BOUNDS(1, 1)